Operasi Vektor dan Contoh Soalnya

 

Pengertian Vektor

Vektor merupakan sebuah besaran yang memiliki arah. Vektor digambarkan sebagai panah dengan yang menunjukan arah vektor dan panjang garisnya disebut besar vektor. Dalam penulisannya, jika vektor berawal dari titik A dan berakhir di titik B bisa ditulis dengan sebuah huruf kecil yang diatasnya ada tanda garis/ panah seperti \vec{v} atau \bar{v} atau juga:

Misalkan vektor \bar{v} merupakan vektor yang berawal dari titik A(x_1,y_1) menuju titik B(x_2,y_2) dapat digambarkan koordinat cartesius dibawah. Panjang garis sejajar sumbu x adalah v_1 = x_2 - x_1 dan panjang garis sejajar sumbu y adalah v_2 = y_2 - y_1 merupakan komponen-komponen vektor \bar{v}.

pengertian vektor

Komponen vektor \bar{v} dapat ditulis untuk menyatakan vektor secara aljabar yaitu:

\vec{v} = \left(\begin{array}{r} v_1\\ v_2\end{array}\right) = \left(\begin{array}{r} x_2-x_1\\ y_2-y_1\end{array}\right) atau \vec{v} = (v_1,v_2)

Jenis-jenis Vektor

Ada beberapa jenis vektor khusus yaitu:

  • Vektor Posisi
    Suatu vektor yang posisi titik awalnya di titik 0 (0,0) dan titik ujungnya di A (a_1,a_2)
  • Vektor Nol
    Suatu vektor yang panjangnya nol dan dinotasikan \bar{0}. Vektor nol tidak memiliki arah vektor yang jelas.
  • Vektor satuan
    Suatu vektor yang panjangnya satu satuan. Vektor satuan dari \vec{v} = \left(\begin{array}{r} v_1\\ v_2\end{array}\right) adalah:
    \bar{U_v} = \frac{\bar{v}}{\mid\bar{v}\mid} = \frac{1}{\mid\bar{v}\mid}\left(\begin{array}{r} v_1\\ v_2\end{array}\right)
  • Vektor basis
    Vektor basis merupakan vektor satuan yang saling tegak lurus. Dalam vektor ruang dua dimensi (R^2) memiliki dua vektor basis yaitu \bar{l} = (1,0)dan \bar{j} = (0,1). Sedangkan dalam tiga dimensi (R^3) memiliki tiga vektor basis yaitu \bar{I} = (1, 0, 0)\bar{J} = (0, 1, 0), dan \bar{K} = (0, 0,1).

Vektor di R2 

Panjang dari suatu segmen garis yang menyebutkan vektor dilambangkan dengan memakai simbolatau dapat juga dinotasikan dengan menggunakan simbol |simbol|

Berikut ini panjang dari vektor yaitu seperti berikut ini:

panjang dari vektor

Panjang vektor sendiri adalah bentuk yang bisa dihubungkan dengan sudut ∅  yang dapat dengan mudah untuk dibentuk oleh vektor serta juga sumbu positif.

vektor sumbu positif

Operasi Vektor di  R2 

⇒ Proses penjumlahan dan juga Pengurangan Vektor di R2 

Resultan adalah sebutan dari hasil penjumlahan yang dilakukan pada dua vektor atau pun lebih.

Penjumlahan pada vektor ini sendiri juga dapat dilakukan secara aljabar serta juga dapat dilakukan dengan memakai cara menjumlahkan komponen yang berada di posisi sama atau seletak.

Apabila:

materi vektor matematika pdf

maka :

pengertian vektor matematika

Maka penjumlahan secara grafis sendiri dapat kita lihat pada contoh gambar yang ada di bawah ini:

Penjumlahan Vektor Secara Grafis

Pada pengurangan vektor ini diberlakukan sama dengan yang ada pada penjumlahan, antara lain adalah sebagai berikut, lihat pada contoh di bawah ini:

operasi vektor matematika

Sifat -sifat di dalam penjumlahan vektor ini sendiri adalah seperti di bawah ini, silahkan disimak rumusnya:

⇒ Perkalian Vektor di RDengan Skalar 

Suatu vektor sendiri juga dapat dikalikan dengan suatu skalar atau bilangan real yangnantinya akan menghasilkan suatu vektor baru jika simboladalah vektor dan k merupakan skalar.

Sehingga perkalian vektor dapat dinotasikan menjadi seperti di bawah ini:

skalar

Berikut ini merupakan beberapa keterangan selengkapnya:

  • Apabila k > 0, maka vektor skalarakan searah dengan vektor simbol 
  • Apabila k < 0, maka vektor skalarakan berlawanan arah dengan vektor simbol
  • Apabila k = 0, maka vektor skalarmerupakan vektor identitas vektor identitas

Jika secara grafis perkalian ini dapat mengubah panjang vektor serta dapat dilihat pada tabel yang terletak di bawah ini:

Perkalian Vektor matematika Secara Grafis

Jika secara aljabar, perkalian vektor simboldengan skalar k dapat kita rumukan dengan memakai rumus seperti yang ada di bawah ini:

rumus

⇒ Perkalian Skalar Dua Vektor di R2 

Dalam perkalian skalar dua vektor bisa juga disebut sebagai hasil kali titik dua vektor yang dapat kita tuliskan seperti yang ada di bawah ini:

Perkalian Skalar

Vektor di R3

Vektor yang terelta di dalam ruang tiga dimensi (x, y, z) di mana jarak antara dua titik vektor dalam R3 bisa kalian ketahui dengan pengembangan rumus phytagoras.

Apabila titik dari A(x2. y2. z2) serta B(x2. y2. z2) adalah:

ruang tiga

Atau apabila v1, sehingga:

r 3

Vektor simbol vektor bisa disebutkan dalam dua bentuk, yakni dalam kolom

ab atau dalam baris menjadi ab baris

Vektor juga bisa disajikan sebagai kombinasi linier dari vektor basis seperti 1 atau 2 dan atau 3

berikut selengkapnya:

Vektor Matematika Kombinasi Linier

Operasi Vektor di R3

Operasi vektor di R3 secara umum, mempunyai konsep yang sama dengan operasi yang ada di vektor R2 dalam penjumlahan, pengurangan, hingga perkalian.

Penjumlahan dan pengurangan vektor di R3

Penjumlahan dan juga pengurangan vektor di R3 sama dengan yang ada di vektor R2 yakni:

Penjumlahan dan Pengurangan Vektor Matematika di R3

Perkalian vektor di R3 dengan skalar

Apabila simbol merupakan vektor dan k merupakan skalar. Maka perkalian vektor menjadi:

perkalian

Hasil kali skalar dua vektor

Selain rumus pada R3, terdapat rumus lain dalam hasil kali skalar dua vektor. Apabila 4 dan 5 maka 6 adalah:

7 

Contoh Soal Vektor dan Pembahasan

1. Diketahui titik A(2,4,6), titik B(6,6,2), dan titik C(p,q,-6). Jika titik A, B, dan C segaris maka tentukan nilai p+q.

a. 20

b. 22

c. 24

d. 26

e. 30

JAWAB :

Jika titik-titik A, B, dan C segaris maka vektor \bar{AB} dan vektor \bar{AC} bisa searah atau berlainan arah. Sehingga akan ada bilangan m yang merupakan sebuah kelipatan dan membentuk persamaan

  • m.\bar{AB} = \bar{AC}

Jika B berada diantara titik A dan C, diperoleh:

  • \bar{AB} + \bar{BC} = \bar{AC}

sehingga:

\bar{AB} = \left(\begin{array}{r} 6-2\\ 6-4\\ 2-6\end{array}\right) = \left(\begin{array}{r} 4\\ 2\\ -4\end{array}\right)

\bar{AC} = \left(\begin{array}{r} p-2\\ q-4\\ -6-6\end{array}\right) = \left(\begin{array}{r} p-2\\ q-4\\ -12\end{array}\right)

Maka kelipatan m dalam persamaan:

m.\bar{AB} = \bar{AC}

m.\left(\begin{array}{r} 4\\ 2\\ -4\end{array}\right) = \left(\begin{array}{r} p-2\\ q-4\\ -12\end{array} \right)

-4.m = (-12) \rightarrow m = 3

Diperoleh:

  • 2.m = (q - 4) \rightarrow 6 = (q - 4)
    q = 10
  • 4.m = (p - 2) \rightarrow 12 (p - 2)
    p = 14

disimpulkan:

p+q=10+14=24


2. Diketahui vektor pada titik A dan titik B dan vektor pada titik C yang berada diantara garis Ab seperti gambar dibawah. Tentukan persamaan vektor C.


contoh soal vektor dan pembahasannya

Pembahasan 2:

Dari gambar dapat diketahui bahwa:

  • \bar{AB} + \bar{a} = \bar{b} sehingga \bar{AB} = \bar{b} - \bar{a}
  • \bar{AC} = \frac{m}{m+n}\bar{AB} = \frac{m}{m+n}(\bar{b} - \bar{a})

Sehingga:

\bar{c} = \bar{AC} + \bar{a}

= \frac{m}{m+n} (\bar{b} - \bar{a}) + \bar{a} = \frac{m}{m+n}(\bar{b}) - \frac{m}{m+n}(\bar{a}) + \frac{m+n}{m+n}(\bar{a})

= \frac{m}{m+n}(\bar{b})+\frac{n}{m+n}(\bar{a})


3. Misalkan vektor \bar{a} = 4\bar{i} + y\bar{j} dan vektor \bar{b}=2\bar{i} + 2\bar{j} + \bar{k}. Jika panjang proyeksi vektor a ̅\bar{a} pada \bar{b} adalah 4. Maka tentukan nilai y!

a. 2
b. 4
c. 6
d. 8 
e. 10

Pembahasan 3:

Diketahui:

  • \mid\bar{b}\mid = \sqrt{(2)^2 + (2)^2 + (1)^2} = \sqrt{9} = 3
  • \bar{a}.\bar{b} = (4.2) + (2.y) + (0.1) = 8 + 2y

Maka:

\bar{c} = \mid\frac{\bar{a}.\bar{b}}{\mid\bar{b}\mid} \mid \bar{b}\overset{menjadi}{\rightarrow}4 = \mid\frac{8+2y}{3}\mid

12=8+2y

y=2



Komentar

Postingan populer dari blog ini

Proyeksi Ortogonal dan Panjang Proyeksi beserta Contoh Soalnya

Soal persamaan eksponen dan sifat-sifatnya

SOAL VEKTOR